Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 255-259, 2022.
Artigo em Chinês | WPRIM | ID: wpr-935787

RESUMO

Objective: To explore the expulsion effect of sodium dimercaptopropanesulfonate (DMPS) on mercury in different organs of mercury poisoning and the therapeutic effect of glutathione (GSH) combined with antioxidant therapy on mercury poisoning. Methods: In February 2019, 50 SPF male SD rats were randomly divided into 5 groups, 10 rats in each group: A (saline negative control group) , B (HgCL2 positive control group) , treatment group (C: intramuscular injection of DMPS 15 mg/kg treatment, D: intramuscular injection of DMPS30 mg/kg treatment, E: intramuscular injection of DMPS 15 mg/kg and intraperitoneal injection of GSH200 mg/kg treatment) . Rats in group B, C, D and E were subcutaneously injected with mercury chloride solution (1 mg/kg) to establish a rat model of subacute mercury poisoning kidney injury. Rats in group A were subcutaneously injected with normal saline. After the establishment of the model, rats in the treatment group were injected with DMPS and GSH. Rats in group A and group B were injected with normal saline. At 21 d (treatment 7 d) and 28 d (treatment 14 d) after exposure, urine and blood samples of 5 rats in each group were collected. Blood biochemistry, urine mercury, urine microalbumin and mercury content in renal cortex, cerebral cortex and cerebellum were detected. Results: After exposure to mercury, the contents of mercury in renal cortex, cerebrum and cerebellum of rats in group B, C, D and E increased, and urine microalbumin increased. Pathology showed renal tubular injury and renal interstitial inflammation. Compared with group B, urinary mercury and renal cortex mercury in group C, D and E decreased rapidly after DMPS treatment, and there was no significant decrease in mercury levels in cerebellum and cerebral cortex of rats, accompanied by transient increase in urinary albumin after DMPS treatment (P<0.05) ; the renal interstitial inflammation in group E was improved after GSH treatment. There was a positive correlation between urinary mercury and the contents of mercury in renal cortex, cerebral cortex and cerebellum (r=0.61, 0.47, 0.48, P<0.05) . Conclusion: DMPS mercury expulsion treatment can significantly reduce the level of metal mercury in the kidney, and there is no significant change in the level of metal mercury in the cortex and cerebellum.


Assuntos
Animais , Masculino , Ratos , Encéfalo/efeitos dos fármacos , Glutationa , Inflamação , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Cloreto de Mercúrio/uso terapêutico , Mercúrio/urina , Intoxicação por Mercúrio/tratamento farmacológico , Ratos Sprague-Dawley , Solução Salina/uso terapêutico , Unitiol/uso terapêutico
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 419-21, 2007.
Artigo em Inglês | WPRIM | ID: wpr-634871

RESUMO

To investigate the therapeutic effect of high-dosage gamma-aminobutyric acid (GABA) on acute tetramine (TET) poisoning, 50 Kunming mice were divided into 5 groups at random and the antidotal effects of GABA or sodium dimercaptopropane sulfonate (Na-DMPS) on poisoned mice in different groups were observed in order to compare the therapeutic effects of high-dosage GABA with those of Na-DMPS. Slices of brain tissue of the poisoned mice were made to examine pathological changes of cells. The survival analysis was employed. Our results showed that both high-dosage GABA and Na-DMPS could obviously prolong the survival time, delay onset of convulsion and muscular twitch, and ameliorate the symptoms after acute tetramine poisoning in the mice. Better effects could be achieved with earlier use of high dosage GABA or Na-DMPS. There was no significant difference in prolonging the survival time between high-dose GABA and Na-DMPS used immediately after poisioning. It is concluded that high-dosage GABA can effectively antagonize acute toxicity of teramine in mice. And it is suggested that high-dosage GABA may be used as an excellent antidote for acute TET poisoning in clinical practice. The indications and correct dosage for clinical use awaits to be further studied.


Assuntos
Doença Aguda , Antídotos/administração & dosagem , Antídotos/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/intoxicação , Distribuição Aleatória , Rodenticidas/intoxicação , Unitiol/uso terapêutico , Ácido gama-Aminobutírico/administração & dosagem , Ácido gama-Aminobutírico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA